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Abstract

Background—Seasonal influenza vaccines aim to induce strain-specific neutralizing antibodies. 

Non-neutralizing antibodies may be more broadly cross-reactive and still protect through 

mechanisms including antibody-dependent cell-mediated cytotoxicity (ADCC). Influenza vaccines 

may stimulate ADCC antibodies in adults, but whether they do so in children is unknown. Here we 

examined how vaccination affects cross-reactive ADCC antibody responses in children after 

receipt of inactivated trivalent vaccine (IIV3) or quadrivalent live-attenuated vaccine (LAIV4).

Methods—Children aged 5–17 were recruited in fall 2014 to provide pre- and post-vaccination 

serum samples. Children aged 5–9 received LAIV4 based on then-current recommendation, and 

older children were randomly assigned to IIV3 or LAIV4. We used microtiter-plate-based flow 

cytometry with an NK cell line to examine ADCC antibody responses to the 2014–15 H3N2 

vaccine component (A/Texas/50/2012 [TX12]) and a drifted strain, A/Switzerland/9715293/2013 

(SW13). Responses were stratified by two-season (2013–14 and 2014–15) vaccine sequence.
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Results—Eighty-five children received LAIV4 and 45 received IIV3. Prevaccination ADCC 

activity was highest in children who had received any vaccine in the prior season. Increase in 

ADCC antibody responses against the vaccine strain TX12 following vaccination was greatest for 

participants who received IIV3 in 2014–15 and LAIV4 in the prior season (geometric mean fold 

rise [MFR]=1.6, 95% CI 1.23 – 2.11). This group also had a detectable ADCC response to the 

drifted SW13 strain. There was a modest ADCC response against SW13 in LAIV4 recipients who 

were unvaccinated in the previous season (MFR=1.18, 95% CI 1.10 – 1.25). There were no 

significant changes in 2014–15 ADCC response to vaccination among children who had received 

IIV3 in 2013–14.

Conclusions—Vaccinating children with IIV3 after prior receipt of LAIV4 generated a modest 

increase in ADCC antibodies, including some cross-reactivity with an emerging drift variant. 

Other vaccine-induced ADCC responses were minimal and not affected by vaccine type or 

sequence.
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1. Introduction

Influenza vaccines are optimized to elicit neutralizing antibodies, which primarily recognize 

the variable globular head domain of the hemagglutinin (HA) attachment protein. Vaccine 

strains are selected primarily on their ability to elicit strong hemagglutination-inhibiting (HI) 

antibodies in serum against viruses that are projected to be dominant in circulation in the 

coming season [1]. Early challenge studies suggested that an HI titer of 1:40 is associated 

with 50% reduction in influenza incidence in healthy adults (sometimes referred to as 

protection of 50% of subjects), but more recent studies have shown that this threshold is 

most likely not a valid correlate of protection [2–4]. Because most neutralizing antibodies 

induced by infection and/or current vaccines are highly strain-specific, antigenic match 

between the vaccine and circulating strains also affects vaccine-induced protection. Vaccine-

induced antibodies may have reduced activity against antigenically drifted viruses, or may 

be directed against epitopes that are not present or accessible on circulating viruses, 

contributing to reduced protection.

Antibodies can mediate important immune effector functions beyond neutralization [5] [6] 

[7]. For example, interactions with Fc receptors (FcR) may contribute to the ability of 

broadly neutralizing antibodies directed against the conserved HA stalk to provide 

protection against influenza virus infection in vivo [8; 9]. Once bound to antigen, antibody 

Fc regions can mediate complement fixation [10], phagocytosis [11; 12], and/or antibody-

dependent cell- mediated cytotoxicity (ADCC) [13]; the latter 2 functions require interaction 

with FcR on immune cells.

Recent studies have shown that seasonal influenza vaccines stimulate antibodies capable of 

mediating ADCC (“ADCC antibodies”) [14–16]. ADCC antibodies need not be neutralizing 

and may cross-react against a range of virus strains and subtypes. It has therefore been 

proposed that vaccine-induced ADCC antibodies could provide a measure of protection 

Florek et al. Page 2

Vaccine. Author manuscript; available in PMC 2021 February 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



against antigenically divergent viruses, including pandemic viruses, when most neutralizing 

antibodies, directed as they are against the variable globular head of HA, would fail to do so 

[7; 17].

In 2014, an H3N2 antigenic drift variant belonging to clade 3c2.A, represented by A/Hong 

Kong/4801/2014, emerged and became dominant during the 2014–15 Northern Hemisphere 

influenza season. The H3N2 vaccine component for that season, A/Texas/50/2012 (TX12), 

was a poor match for these circulating drift variants, and vaccine effectiveness was low [18]. 

Northern Hemisphere vaccines for the 2015–16 influenza season were updated to include A/

Switzerland/9715293/2013 (SW13), a clade 3c3.A virus more closely matched to the drift 

variants that emerged in the previous season. Here we took advantage of this naturally 

emerging influenza antigenic variation and vaccine update to examine the capacity of 

influenza vaccines to elicit cross-reactive ADCC antibody responses in children. We 

reasoned that, while previous studies had shown that influenza vaccination can boost ADCC 

antibodies in adults, such responses could rely on pre-existing immunity and therefore that 

vaccination might not effectively stimulate ADCC antibodies in children, whose influenza 

exposure histories are more limited. We analyzed ADCC antibody responses to 2014–15 

season vaccination in children receiving either live attenuated or inactivated vaccines. 

Children’s responses were also stratified by prior season (2013–14) vaccination (live 

attenuated, inactivated, or none) to assess repeat vaccination effects.

2. Materials and Methods

2.1. Study population and serum collection

Parents of children 5–17 years old were recruited in the fall of 2014 by mail and telephone 

to participate in a serological vaccine study [19] of antibody responses after receipt of 

quadrivalent live attenuated inactivated influenza vaccine (LAIV4) or trivalent inactivated 

influenza vaccine (IIV3) Participants were children (n=130) who (a) participated in a similar 

serologic influenza vaccine study in the previous 2013– 14 influenza season [20], or (b) 

lived in Marshfield, Wisconsin or surrounding area where annual studies of influenza 

vaccine effectiveness were conducted [18]. Recruitment was restricted to this population 

because they were living in the surveillance area for laboratory-confirmed influenza 

infections during the prior influenza season, and vaccination information for this population 

is captured through a validated vaccination registry [21].

Participants aged 5–8 years received LAIV4 according to then-current recommendations 

from the U.S. Advisory Committee on Immunization Practices (ACIP), while 9–17-year-

olds were randomized to receive either LAIV4 or IIV3 [22]. Participants had a baseline 

serum blood draw at the time of vaccination and a post-vaccination serum blood draw at 28 

days. HI antibody responses to 2014–15 influenza A vaccine viruses in these participants, 

including the H3N2 strain TX12, have been described previously [23].
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2.2. Informed consent

Study procedures were approved by the Marshfield Clinic Institutional Review Board. 

Informed consent was obtained from the parents/guardians of all participants and assent was 

obtained from children aged ≥7 years.

2.3. Antibody-dependent cell-mediated cytotoxicity (ADCC) assay

We examined serum antibodies’ ability to trigger degranulation by natural killer (NK) cells 

in the presence of HA proteins as a proxy for ADCC. Degranulation is detected by the 

presence of CD107a on the surface of NK cells. The frequency of NK cells expressing 

CD107a in the presence of HA protein and participant serum (subtracting the frequency of 

NK cells that spontaneously express CD107a in the absence of antigen) is proportional to 

the magnitude of ADCC antibody responses [24]. We measured HA- and serum-specific 

degranulation by NK reporter cells using a modification of a protocol described previously 

[24]. Briefly, 96-well plates were coated overnight with trimeric recombinant HA TX12 or 

SW13; proteins were expressed in a baculovirus expression system (kindly provided by 

Centers for Disease Control and Prevention, USA) [25]. Wells were then washed multiple 

times with phosphate-buffered saline (PBS) to remove unbound proteins. A 1:10 dilution of 

heat- inactivated serum (56°C for 1 hour) was then added to each well and incubated at 37°C 

for 2 hours. For endpoint titers a serum dilution series was prepared 

(1:10,1:50,1:100,1:500,1:1000). Wells were again washed repeatedly with PBS. Next, 2×105 

NK cells expressing CD16 (cell line KHYG-1, kindly provided by Dr. David Evans of the 

University of Wisconsin-Madison) were added to each well in RPMI medium containing 

10% fetal calf serum (Hyclone, Logan, UT), together with anti-human-CD107a-APC-H7 

(H4A3 clone, BD Biosciences, San Jose, CA), 5 μg/ml Brefeldin A (Sigma, St. Louis, MO) 

and 5 μg/ml Monensin (Golgi Stop, BD Biosciences, San Jose, CA) [26]. Plates were 

incubated for 5 hours at 37°C, after which time cells were incubated with the following 

antibodies for 30 min at room temperature: anti-CD16 (clone 3G8, BD Biosciences, San 

Jose, CA) antiNKG2A PC7 (clone Z199, Beckman Coulter, Brea, CA) and Live Dead Stain 

Near IR (ThermoFisher Scientific, Grand Island, NY). Finally, cells were fixed with 1% 

paraformaldehyde and acquired on an LSRII flow cytometer (BD Biosciences). Wells 

without serum added were used as negative controls in each assay, as influenza-naïve human 

serum was not available. A combination of phorbol 12-myristate 13-acetate (PMA) and 

Ionomycin was used as a positive control for the assay. KHYG-1 cells are used here to 

provide a consistent population of effector cells and control for variability in activity of 

primary NK cells among participants. Data were analyzed using FlowJo Version 10.0. The 

endpoint antibody titer was defined as the serum dilution at which the frequency of NK cell 

degranulation was equal to the no-antigen control.

2.4. Statistical analyses

Participants were first grouped for analysis by type of vaccine received in the 2013–14 

influenza season: IIV3 (n = 58), LAIV4 (n = 51), or none (n = 21; Table 1). Serologic 

endpoints were defined as (1) ADCC antibody activity measured against the vaccine strain 

TX12 and the drift variant SW13 at baseline and (2) mean fold rise in ADCC antibody 

activity against these proteins from baseline to post-vaccination in 2014–15.
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Comparisons were tested using Student’s T test, ANOVA, linear regression or Chi-Squared 

as indicated. All tests involving multiple comparisons were adjusted using Bonferroni’s 

method of adjusting for multiple comparisons. Statistical analyses and plots were conducted 

or produced in R version 3.3.0 using ggplot2 (https://www.R-project.org; [27] and Graphpad 

Prism version 6 (GraphPad Software, La Jolla, California). Because this was an exploratory 

study, sample size calculations were not performed.

3. Results

3.1. Participant characteristics

The analysis included 130 children, including 85 who received LAIV4 and 45 who received 

IIV3; 109 (84%) had been vaccinated in the prior season (Table 1). The mean age was 10.8 

years and 10 participants (8%) had PCR-confirmed influenza virus infection during the prior 

season; 9 of these infections were with H1N1pdm09 and one was unsubtypeable [20]. By 

design, there were significant differences in the number of subjects and mean age in each 

group.

3.2. Antibodies capable of antibody-dependent cell-mediated cytotoxicity (ADCC) are 
present at baseline

We measured ADCC antibody responses using a microtiter plate-based assay described 

previously [24; 28]. This assay quantifies the extent to which participant serum (the source 

of influenza-specific antibodies) can activate an NK reporter cell line in the presence of 

plate-bound influenza HA proteins. ADCC activity was detectable in most participants 

against TX12, SW13, or both viruses prior to vaccination (Figure 1). Baseline ADCC 

activity was significantly higher among children with prior season vaccination than without: 

compared to unvaccinated children in 2013–14, mean activity was higher for children who 

received IIV3 in 2013–14 [34.6% of NK cells responding (95% CI 31.6 – 37.6) P < 0.001], 

and children who received LAIV4 [30.6% (95% CI 26.7 – 34.5) vs. 19.3% (95% CI 13.8 – 

24.8) P = 0.001]. ADCC activity at baseline did not differ significantly by age or by 2013–

14 H1N1pdm09 influenza infection status.

3.3. Vaccine type moderately affects ADCC antibody response

We next determined whether the ADCC response after vaccination was affected by prior 

season vaccine status and/or modality. Participants who received LAIV4 during in 2013–14 

followed by IIV3 in 2014–15 had modest, but statistically significant, increases in ADCC 

antibodies against the vaccine strain TX12 (mean fold rise in GMT of 1.6; P=0.045), but not 

against the drift variant SW13 (Figure 2). Participants who were unvaccinated during the 

2013–14 influenza season and received LAIV4 the following season showed increases in 

ADCC antibodies against TX12 that were even more modest, but still significant (mean fold 

rise in GMT of 1.1; P=0.005); however there was no measurable increase in ADCC 

antibodies against SW13 in these participants (Figure 2). There was no significant increase 

in ADCC antibody frequency after vaccination in any of the other exposure groups.
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3.4. ADCC antibody response to vaccination is associated with HI antibody response

HI antibody titers against TX12 at baseline and after IIV or LAIV vaccination in the 2014–

15 season were previously reported for participants in this study [23]; unfortunately it was 

not possible to test SW13. In Figure 3 we replotted these data according to the exposure 

groups defined above. As observed for ADCC antibody responses, most participants had 

detectable HI antibodies against TX12 at baseline, which were modestly increased following 

vaccination in subjects receiving IIV3 (P=0.002 for both IIV3-IIV3 and LAIV4-IIV3). A 

regression analysis suggested that increases in ADCC antibody levels after vaccination were 

significantly associated with fold rise in HI titer to the H3N2 vaccine antigen (for ADCC 

antibodies TX12 P=0.006 and against SW13 P<0.001) and with age under 11 years 

(significant for ADCC antibodies against SW13 P=0.004 only; TX12 P=1). However, age 

and rise in HI titer do not fully predict ADCC antibody response (TX12 adj. R2=0.061; 

SW13 adj. R2=0.185).

3.5. Endpoint titration of ADCC antibodies in select participants

To compare the differences in ADCC antibody activity against TX12 and SW13 with greater 

resolution we determined the endpoint titer of ADCC antibodies in a subset of participants 

for whom sufficient sample volumes were available. We focused on participants in the 

LAIV4-IIV3 and LAIV4-LAIV4 groups because receipt of LAIV4 in 2013–14 was 

associated with the greatest observed increase in ADCC antibody activity in our initial 

experiments (Figure 2). Of the selected participants who received LAIV4 in 2013–14 and 

IIV3 in 2014–15, the geometric mean ADCC endpoint titer against TX12 was 14 before 

vaccination and 67 after vaccination (P=0.04); endpoint titers against SW13 increased from 

11 before vaccination to 19 after vaccination, but this change was not statistically significant 

(P > 0.05; Figure 4). Participants who received LAIV4 in both seasons had no significant 

changes in ADCC antibody titers against either virus (Figure 4). Notably, participants who 

received LAIV4 in 2013–14 had higher ADCC antibody titers at baseline than participants 

who received IIV3 in 2013–14, which might have affected our ability to detect a significant 

increase in ADCC antibody titers in the LAIV4-LAIV4 group in this subset analysis. 

Together these results confirmed that in these participants, receipt of LAIV4 followed by 

IIV3 appeared to increase ADCC antibody responses against the vaccine strain, but not 

against a contemporaneous drift variant, while our ability to draw conclusions about the 

effects of LAIV4 vaccination in sequential seasons on ADCC antibody titer were limited.

4. Discussion

ADCC antibodies cannot prevent infection of cells, but can eliminate infected cells, 

speeding clearance of infection and potentially reducing morbidity and mortality. ADCC has 

therefore been proposed as a correlate of protective immunity, particularly for newly 

emerging antigenic variants, against which they could provide a measure of cross-protection 

in the absence of strain-specific neutralizing antibodies [17]. However, the ability of current 

vaccine modalities to induce cross-reactive ADCC antibodies is not well characterized. The 

emergence of SW13 allowed us to examine ADCC antibody responses against a virus 

antigenically matched to the vaccines received by participants (TX12) and a relevant natural 

drift variant. Before vaccination with the 2014–15 TX12 vaccine strain, most participants in 
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the study had baseline ADCC responses against both TX12 and SW13 strains. We observed 

significant increases in ADCC antibody frequencies after vaccination only in participants 

who received LAIV4 followed by IIV3, or those who were unvaccinated in 2013–14 and 

received LAIV4 the following season. In each case, we only observed these statistically 

significant increases against the TX12 antigen; no group had significant increases in ADCC 

antibodies against the SW13 drift variant. The ADCC antibody response was correlated with 

a modest rise in HI titer against the vaccine antigen TX12.

Although we observed statistically significant increases in ADCC antibody activity against 

TX12, they are quite modest, with mean rises in GMT less than 2-fold. Together these 

findings suggest that current seasonal influenza vaccines, both live attenuated and 

inactivated, provide limited boosts to ADCC antibodies in school-aged children.

ADCC antibody responses to primary H1N1pdm09 infection in 5 children were reported by 

de Vries et al, indicating that children can make robust ADCC antibody responses to 

homologous virus following natural infection [16]. Most previous studies of ADCC antibody 

responses to influenza vaccination have focused on adults, who have extensive histories of 

exposure to influenza [14–16; 29; 30]. Currently licensed seasonal influenza vaccines have 

been shown to boost cross-reactive ADCC antibodies in adult humans, including in older 

adults [28; 29]. One recent study used a commercially available reporter assay to examine 

ADCC responses to H1N1pdm viruses in 20 children and 20 adults given LAIV [31]. They 

found modest, but detectable, ADCC responses to LAIV vaccination in children (averaging a 

2-fold rise relative to baseline), which is consistent with the findings from IIV- and LAIV-

vaccinated children we report here. Adults vaccinated with LAIV in this study showed no 

detectable rise in ADCC antibody activity relative to baseline, and neutralizing antibody 

titers were not significantly boosted in either adults or children [31] As noted above, we 

observed an association between response to vaccine antigens (LAIV or IIV) and post-

vaccination ADCC antibody activity after vaccination in children, suggesting that in our 

subjects there was at least a sizeable subset of antibodies capable of inhibiting 

hemagglutination as well as mediating ADCC. Of note, Zhong et al. observed similar 

correlations between HI and ADCC antibody responses to influenza vaccination in a cohort 

of 20 adults given the 2014–15 vaccine (which contained TX12), although twice as many 

subjects seroconverted for ADCC responses as did for HI responses against the SW13 drift 

variant (90 vs. 45%; [15]).

The basis for the relatively modest boost in ADCC antibody responses after influenza 

vaccination in children is not clear. Evidence from animal models may suggest a potential 

mechanism. Although ADCC antibodies appear to limit the duration of influenza infection 

in nonhuman primates [24; 28; 32], seasonal vaccines were unable to elicit cross-reactive 

ADCC antibodies in naïve monkeys [33]. This result suggests that inactivated vaccines may 

be ineffective at generating antibodies with ADCC activity de novo, while vaccination can 

effectively boost pre-existing ADCC responses. We speculate that the relatively limited 

influenza exposure histories of children could result in a large proportion of their antibody 

repertoires targeting the immunodominant globular head of HA and limit their ability to 

mount ADCC responses to vaccination. In this context we note that, in our study, there was 

no difference in ADCC antibody response to vaccination in younger (aged 5–9) and older 
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(aged 9–17) children, as one might expect if accumulating influenza exposures might 

promote such responses, although responses in our cohort were modest overall and our 

exploratory study may have been underpowered to observe significant differences by age. 

This scenario could, however, help explain the close correlation between HI and ADCC 

responses in these participants and the observation that LAIV followed by IIV3 appeared to 

modestly boost ADCC antibodies against only the vaccine strain TX12 but not the drift 

variant SW13. A recent study reported that antibodies targeting the HA globular head 

(which would be detected in HI assays) were less effective in mediating FcR-dependent 

effector functions than antibodies that recognized epitopes in the stem [34]. HI antibodies 

boosted by vaccination in our participants could therefore also mediate the modest and 

strain-specific ADCC response we observed here, though notably our assays cannot identify 

epitope specificity of ADCC antibodies. In sum, we do not intend to argue here that ADCC 

antibodies are strain-specific and not cross-reactive as a general rule, but rather that in 

humans ADCC antibody specificities, like those of neutralizing antibodies, may be shaped 

by influenza exposure history and therefore vary with age, repeated vaccination/infection 

status, and other factors.

Our study has additional important limitations. The plate-based ADCC antibody assay 

measures CD107a expression on the surface of NK cells after FcγR engagement as a proxy 

for degranulation and killing of target cells. This method does not examine killing of virus-

infected target cells. While we use the trimeric form of HA protein to better represent its 

native conformation on the cell surface, it is still likely that immobilization of proteins in 

tissue culture plates exposes epitopes that are not accessible to antibodies in vivo. 

Interpretation of this data is also difficult due to the age distribution of participants with 

different vaccine exposure histories. Consistent with then-current ACIP recommendations 

[22], all children aged 5–8 received LAIV4 during the study, causing the LAIV4 groups to 

have a younger age distribution. As a result, in younger children we were only able to assess 

responses to the live attenuated vaccine. Despite these limitations, it is nonetheless clear 

from our study that seasonal influenza vaccines did not effectively boost ADCC antibodies 

in our school-aged participants.

5. Conclusions

ADCC and other antibody effector functions do not depend on strain-specific virus 

neutralization, and may therefore play an important role in preventing or ameliorating 

influenza disease when novel antigenic variants emerge. We examined ADCC responses to 

influenza vaccination in children for the first time, finding that current influenza vaccines 

provide only limited boosting to ADCC antibody responses. As noted in the recent National 

Institute of Allergy and Infectious Disease strategic plan for developing a universal influenza 

vaccine [35], future studies should prioritize evaluating the role of ADCC and other effector 

functions mediated via interactions between antibody Fc domains and cellular Fc receptors 

in cross-reactive immunity to influenza in humans and relevant animal models [6]. Given the 

existing evidence supporting ADCC in cross-protection against influenza, examining the 

mechanisms by which vaccines can effectively stimulate antibodies that mediate ADCC as 

well as other Fc receptor effector functions should also be a priority. Recent findings from 

small animal models suggesting that broadly neutralizing antibodies against influenza must 
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also preserve interactions with Fc receptors in order to mediate protection in vivo further 

underscore the importance of these topics [8; 9]. Improved understanding of cross-reactive 

immunity mediated via Fc-Fc receptor interactions may bring us closer to a broadly cross-

reactive influenza vaccine.
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Figure 1. Baseline ADCC antibody responses against A/Texas/50/2012 and A/Switzerland/
9715293/2013 in 2014–15 stratified by modality received in the prior season (2013–14).
ADCC antibody responses are reported as the percentage of NK cell degranulation (i.e., 

CD107a expression) in the presence of serum and antigen for serum samples collected at the 

time of receipt of 2014–15 influenza vaccine. Red dots and error bars indicate the mean and 

95% confidence interval respectively.
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Figure 2. Fold change in ADCC antibodies as measured by NK cell degranulation against A/
Texas/50/2012 and A/Switzerland/9715293/2013 stratified by the vaccine modality received in the 
2013–14 and 2014–15 influenza seasons.
The fold change in NK cell degranulation is reported as the change from baseline to day 28 

post-vaccination. Bars indicate the geometric mean and 95% confidence interval 

respectively.
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Figure 3. HI antibody responses to A/Texas/50/2012 in study participants.
Changes in HI geometric mean titer were only significant in subjects who received IIV3 

followed by IIV3 and LAIV4 followed by IIV3 in the 2013–14 and 2014–15 seasons 

respectively. Bars indicate the geometric mean and 95% confidence interval respectively.
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Figure 4. ADCC antibody titers in a subset of subjects vaccinated in consecutive seasons with 
either LAIV and then IIV or LAIV and then LAIV.
Boosts to ADCC antibody titer were only significant in subjects who received LAIV4 

followed by IIV3. 7 subjects receiving LAIV4 then IIV3 (a) or LAIV4 in both seasons (b) 

were subsampled from the main cohort for this analysis. Bars indicate the geometric mean 

and 95% confidence interval.
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Table 1:

Study population characteristics

2014-15 vaccine IIV3 LAIV4 overall

Totals 45 85 130

Age 5-8 0 37 37

Age 9-17 45 48 93

2013-14 vaccine

IIV3 21 37 58

LAIV4 16 35 51

none 8 13 21

Confirmed influenza infection in 2013-14* 1 9 10

*
9 of 10 RT-PCR-confirmed influenza infections were subtyped as H1N1pdm09 and one was not subtyped.

We cannot be certain that all potential influenza infections in the study population were captured.
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